Geometric Transformations, RANSAC and Morphing

CS448V — Computational Video Manipulation

April 2019

Feature detection

Feature detection

Feature description

Feature detection

Feature description

Feature matching

Feature detection

Feature description

Feature matching

Warping

Relation between photos

• Detect, describe and match features (last lecture)

- Detect, describe and match features (last lecture)
- Calculate transformation robustly

- Detect, describe and match features (last lecture)
- Calculate transformation robustly
 RANSAC

- Detect, describe and match features (last lecture)
- Calculate transformation robustly
 homography
 RANSAC

Not just for feature matching!

Not just for feature matching!

• Start with a model

- Start with a model
 - How many parameters? •

- Start with a model
 - How many parameters? •
 - Minimal amount of data points n? ●

- Start with a model
 - How many parameters? •
 - Minimal amount of data points n? •
- In each iteration

- Start with a model
 - How many parameters? •
 - Minimal amount of data points n? •
- In each iteration
 - Sample n points

- Start with a model
 - How many parameters? •
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ●
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)

- Start with a model
 - How many parameters? •
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet

- Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet

In each iteration

- Sample n points
- Fit model parameters
- Find inliers (below some threshold)
- Revise model parameters
- Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet

In each iteration

- Sample n points
- Fit model parameters
- Find inliers (below some threshold)
- Revise model parameters
- Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? \bullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? \bullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? \bullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? \bullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

RANdom SAmple Consensus

- Start with a model
 - How many parameters?
 - Minimal amount of data points n?
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

RANdom SAmple Consensus

- Start with a model
 - How many parameters?
 - Minimal amount of data points n?
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

RANdom SAmple Consensus

- Start with a model
 - How many parameters?
 - Minimal amount of data points n?
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet
- In each iteration
 - Sample n points
 - Fit model parameters
 - Find inliers (below some threshold)
 - Revise model parameters
 - Calculate error on all points, save best result

- Start with a model
 - How many parameters? ullet
 - Minimal amount of data points n? ullet

In each iteration

- Sample n points
- Fit model parameters
- Find inliers (below some threshold)
- Revise model parameters
- Calculate error on all points, save best result

1 pair

Use best result

RANdom SAmple Consensus

р

How many iterations?

RANdom SAmple Consensus

probability that a given data point is valid (an inlier)

RANdom SAmple Consensus

probability that a given data point is valid (an inlier)

amount of data points that define a transformation

How many iterations?

probability that a given data point is valid (an inlier)

amount of data points that define a transformation

number of iterations

RANdom SAmple Consensus

probability that a given data point is valid (an inlier)

amount of data points that define a transformation

number of iterations

probability of success after M iterations

Probability of a successful iteration (all points are inliers)

probability that a given data point is valid (an inlier)
amount of data points that define a transformation
number of iterations
 probability of success after M iterations

Probability of a successful iteration (all points are inliers)

probability that a given data point is valid (an inlier)
amount of data points that define a transformation
number of iterations
 probability of success after M iterations

Probability of a successful iteration (all points are inliers)

Probability of a failed iteration

probability that a given data point is valid (an inlier)
amount of data points that define a transformation
number of iterations
probability of success after M iterations

 p^n Probability of a successful iteration (all points are inliers)

> Probability of a failed iteration $1 - p^{n}$

 probability that a given data point is valid (an inlier)
amount of data points that define a transformation
number of iterations
 probability of success after M iterations

 p^n Probability of a successful iteration (all points are inliers)

> Probability of a failed iteration $1 - p^{n}$

Probability of all M iterations to fail

probability that a given data point is valid (an inlier)
 amount of data points that define a transformation
 number of iterations
 probability of success after M iterations
probability of success after for iterations

Probability of a successful iteration (all points are inliers)

Probability of a failed iteration

Probability of all M iterations to fail

 probability that a given data point is valid (an inlier)
amount of data points that define a transformation
 number of iterations
 probability of success after M iterations

- p^n
- $1 p^{n}$
- $(1-p^n)^M$

Probability of a successful iteration (all points are inliers)

Probability of a failed iteration

Probability of all M iterations to fail

Probability of success after M iterations

probability that a given data point is valid (an inlier)
 amount of data points that define a transformation
 number of iterations
 probability of success after M iterations

- p^n
- $1 p^{n}$
- $(1-p^n)^M$

Probability of a successful iteration (all points are inliers)

Probability of a failed iteration

Probability of all M iterations to fail

Probability of success after M iterations

 probability that a given data point is valid (an inlier)
amount of data points that define a transformation
number of iterations
 probability of success after M iterations

- p^n
- $1 p^{n}$
- $(1 p^n)^M$
- $S = 1 (1 p^n)^M$

Probability of a successful iteration (all points are inliers)

Probability of a failed iteration

Probability of all M iterations to fail

Probability of success after M iterations

 probability that a given data point is valid (an inlier)
amount of data points that define a transformation
number of iterations
 probability of success after M iterations

- p^n
- $1 p^{n}$
- $(1 p^n)^M$
- $S = 1 (1 p^n)^M$

$$M = \frac{\log(1-S)}{\log(1-p^n)}$$

90 $M = \frac{\log(1 - S)}{\log(1 - p^n)}$ 67.5 Number of iterations M 45 22.5 _0___ 0 ⊂ 0.3 0.5 0.2 0.4 0.1

O n = 1 • n = 3

Number of iterations M

Geometric Transformations

Review – homogeneous coordinates

 $[x, y, 1] \sim [\lambda x, \lambda y, \lambda]$

Review — homogeneous coordinates

Cartesian coordinates

 $[x, y, 1] \sim [\lambda x, \lambda y, \lambda]$

Review – homogeneous coordinates

Cartesian coordinates $[x, y, 1] \sim [\lambda x, \lambda y, \lambda]$

Point at infinity

[x, y, 0]

Review – homogeneous coordinates

Cartesian coordinates $[x, y, 1] \sim [\lambda x, \lambda y, \lambda]$

Point at infinity

Omitted

[x, y, 0]

|0,0,0|
Review – homogeneous coordinates

Translation as matrix multiplication

 $\begin{bmatrix} 1 & 0 & t_x \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & t_y \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

Translation

$\cos\theta$	$-\sin\theta$	t_{x}	
$\sin\theta$	$\cos \theta$	t_y	
0	0	1	

Translation + rotation = Rigid, Euclidean

$s\cos\theta$	$-s\sin\theta$	t_x
$s\sin\theta$	$s\cos\theta$	t_y
0	0	1

Translation + rotation + uniform scale = Similarity

 $\begin{bmatrix} a & b & t_x \end{bmatrix}$ $\begin{vmatrix} c & d & t_y \end{vmatrix}$

Translation + rotation + scale + shear = Affine

 $\begin{bmatrix} a & b & t_x \end{bmatrix}$ $\begin{bmatrix} c & d & t_y \end{bmatrix}$ $\begin{bmatrix} e & f & 1 \end{bmatrix}$

Projective, Perspective, Homography

Degrees of freedom

Degrees of freedom

Transformation	Preserve
Translation	
Rigid	
Similarity	
Affine	Parallelis
Projective	Straight li

Degrees of freedom

→ +----

Transformation	Preserve
Translation	
Rigid	
Similarity	Angles
Affine	Parallelis
Projective	Straight li

Transformation	Preserve
Translation	
Rigid	Length
Similarity	Angles
Affine	Parallelis
Projective	Straight li

Preserves	Degrees of freedom	
Orientation		
Length		
Angles		
Parallelism		
Straight lines		
	PreservesOrientationLengthAnglesParallelismStraight lines	PreservesDegrees of freedomOrientationLengthAnglesParallelismStraight lines

Transformation	Preserves	Degrees of freedom	
Translation	Orientation	2	
Rigid	Length		
Similarity	Angles		
Affine	Parallelism		
Projective	Straight lines		

Transformation	Preserves	Degrees of freedom	
Translation	Orientation	2	
Rigid	Length	3	
Similarity	Angles		
Affine	Parallelism		
Projective	Straight lines		

Transformation	Preserves	Degrees of freedom	
Translation	Orientation	2	
Rigid	Length	3	
Similarity	Angles	4	
Affine	Parallelism		
Projective	Straight lines		

Transformation	Preserves	Degrees of freedom	
Translation	Orientation	2	
Rigid	Length	3	
Similarity	Angles	4	
Affine	Parallelism	6	
Projective	Straight lines		

Transformation	Preserves	Degrees of freedom	
Translation	Orientation	2	
Rigid	Length	3	
Similarity	Angles	4	
Affine	Parallelism	6	
Projective	Straight lines	8	

connect between 3D scenes viewed by a rotating camera

connect between 3D scenes viewed by a rotating camera

connect between planes seen by different cameras

connect between 3D scenes viewed by a rotating camera

We'll revisit these in a later class (structure from motion, scene building)

connect between planes seen by different cameras

Quadratic
$$\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\ b_0 & b_1 & b_2 & b_3 & b_4 & b_5 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ xy \\ x^2 \\ y^2 \end{bmatrix}$$
Or higher orders

Polynomial

Quadratic
$$\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\ b_0 & b_1 & b_2 & b_3 & b_4 & b_5 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ xy \\ x^2 \\ y^2 \end{bmatrix}$$
Or higher orders

Polynomial

Radial

Quadratic
$$\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\ b_0 & b_1 & b_2 & b_3 & b_4 & b_5 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \\ xy \\ x^2 \\ y^2 \end{bmatrix}$$
Or higher orders

Polynomial

Radial

Deformation fields

Beier & Neely '92

Destination Image

Source Image

weight =
$$\left(\frac{\text{line_len}^p}{a + \text{pixel_dis}}\right)$$

Describe other ways to specify dense correspondences

Hypothesize regarding their properties and differences

Assignment 2

Forward sampling

"Where should this pixel go?" **Reverse sampling**

"Where does this pixel come from?"

Forward sampling

"Where should this pixel go?"

Advantage of reverse sampling?

Reverse sampling

"Where does this pixel come from?"

What about in-between landmarks?

Sparse vector field

Sparse vector field

**** fin- 1th any 1/1. 1+-+1+++ · * * * * * * / / / / / / / / ····· 1 1 + + + + + + + - + + +

Dense vector field

barycentric coordinates

 $p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$ $\lambda_i \ge 0$

barycentric coordinates

interpolate vectors

 $p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$ $\lambda_i \ge 0$

barycentric coordinates

interpolate vectors

 $p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$ $\lambda_i \ge 0$

barycentric coordinates

interpolate vectors

 $p = \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$ $\lambda_i \ge 0$

triangulate & interpolate

Sparse vector field

************* *| + + + ↓ ↓ ↓ ↓* 1,11---1 * + ↓]] ↓ + ` * * * ~ ` ` ` / t . . . x x x x x · · · · · · · · · · / / / / / · 1/1. 1+=+11++++++ · * * * * * * * / / / / / /

Dense vector field

Sparse vector field

Can be linear, cubic, ...

************ ```+↓↓↓+````` || + *+ + | | |* + \ 1,11---1 111. * + ↓ | | ↓ + ` * * * ~ ` ` ` $= \frac{1}{1}$ ···· / / / / / / / · · 11- 11 · · · · · · · · · · / / / / / · 1/1. 1+-+1++++++ *********

Dense vector field

Recap

Recap

Recap

Geometric transformations

• Beier & Neely '92

Recap

Geometric transformations

• Beier & Neely '92

• Assignment 2

Recap

Geometric transformations

