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In previous lecture
Feature detection

Feature description

Feature matching

[0.1, 0.6, ...]

[0.0, 0.01, ...]

[0.54, -0.3, ...]

ratio distance =
SSD( f1, f2)
SSD( f1, f′ �2)

f1 f2f2'
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http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
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Image registration

• Detect, describe and match features  
(last lecture)

• Calculate transformation robustly

Relation between photos

Image from OpenCV documentation homography RANSAC
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RANSAC
• Start with a model


• How many parameters?


• Minimal amount of data points n?


• In each iteration


• Sample n points


• Fit model parameters


• Find inliers (below some threshold)


• Revise model parameters


• Calculate error on all points, save best result

RANdom SAmple Consensus

2 (tx, ty)

1 pair

Use best result
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Review — homogeneous coordinates

[x, y,1] ∼ [λx, λy, λ]
Cartesian coordinates

Point at infinity

Omitted

[x, y,0]

[0,0,0]



Review — homogeneous coordinates

Translation as matrix multiplication

1 0 tx
0 1 ty
0 0 1

[
x
y
1] =

x + tx
y + ty

1



1 0 tx
0 1 ty
0 0 1

Translation



cos θ −sin θ tx
sin θ cos θ ty

0 0 1

Translation + rotation = Rigid, Euclidean



Translation + rotation + uniform scale = Similarity

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1



Translation + rotation + scale + shear = Affine

a b tx
c d ty
0 0 1



Projective, Perspective, Homography 

a b tx
c d ty
e f 1
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Projective Straight lines

Affine Parallelism

Similarity Angles

Rigid Length

Translation Orientation

Transformation Preserves Degrees of freedom

Translation

Rigid

Similarity

Affine

Projective

Transformation Preserves Degrees of freedom

Translation 2

Rigid 3

Similarity 4

Affine 6

Projective 8
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2D Homographies

moving camera, plane

connect between planes seen by different cameras

Image from OpenCV documentation

connect between 3D scenes 
viewed by a rotating camera

[Szeliski & Shum ’97]

We’ll revisit these in a later class (structure from motion, scene building)
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Non-linear

RadialPolynomial

[ ̂x
̂y] = [a0 a1 a2 a3 a4 a5

b0 b1 b2 b3 b4 b5]
1
x
y

xy
x2

y2

Quadratic

Or higher orders

Deformation fields



Beier & Neely ‘92





Destination Image Source Image

Q

Q′�
X

X′�

P

P′�

u u

v
v



weight = ( line_lenp

a + pixel_dist )
b









Describe other ways to specify 
dense correspondences 

Hypothesize regarding their 
properties and differences



Assignment 2







Forward sampling Reverse sampling

“Where should 
this pixel go?” 

“Where does this 
pixel come from?” 



Forward sampling Reverse sampling

“Where should 
this pixel go?” 

“Where does this 
pixel come from?” 

Advantage of reverse sampling?





What about in-between landmarks?
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Dense vector fieldSparse vector field
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scipy.interpolate.griddata

interpolate vectorsbarycentric coordinates

p1

p2

p3

p

p = λ1p1 + λ2p2 + λ3p3

λ1 + λ2 + λ3 = 1
λi ≥ 0

triangulate & interpolate
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Dense vector fieldSparse vector field

Can be linear, cubic, …
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• Beier & Neely ’92

• Assignment 2


